

Molecular Insights into Microbial Ecology of the Iberian Margin Deep Biosphere

Abstract

The marine deep sedimentary biosphere covers the majority of the global seafloor. It is an important global reservoir of organic carbon, minerals, and trace metals and sustains an extant microbial biosphere living off of these materials. How active these populations are is subject to much debate with some estimates of population turnover times of >10⁵ years. Recent work involving successful extraction and sequencing of mRNA transcripts, commonly considered a sign of active life due to relative instability of RNA vs. DNA in the environment, has reinvigorated the notion of studying the active deep biosphere. However, preservation potential of RNA in deep biosphere environments, particularly clayrich sediments, has not been explicitly identified.

Here, we present bacteria and eukaryote diversity via illumina sequencing of 16S and 18S rRNA amplicons, as well as initial results of metagenomics analysis, from 6 depths down-core at IODP site U1385 ranging from 10 to 123 meters below seafloor (mbsf). Eukaryotes were examined from the sedimentary DNA and RNA pools. The DNA-based eukaryote signal drops out past 30 mbsf but the RNA-based signal persists to depth. The RNA signal shows a much higher abundance of fungi, a group more likely to be active compared to the Alveolates and Rhizaria detected via DNA. However, abundance of Viridiplantae, a group containing flowering plants, roughly mirrors shipboard pollen spore counts, indicating preservation potential of RNA on geological timescales. Bacterial diversity down-core at the phylum level is relatively low, specifically at depth, where the population is dominated by uncultivated lineages CD12 and JS1. Genomic features of this group are reflected in the metagenomic datasets obtained from the same DNA pools as the amplicons. On-going work is attempting to isolate individual genomes of these ubiquitous yet uncultured groups using cutting-edge metagenomic binning algorithms.

Figure 1:

Comparison of microbial eukaryotes via 18S rRNA sequencing down-core at site U1385. The DNA-based signal drops out below 30 mbsf but RNA-based signal persists to 123 mbsf. Fungi and land-plant pollen spores predominate in the RNA pool. Fungi are likely to be an active member of the sediment column but the Viridiplantae signal indicates preservation of RNA from the early Pleistocene. The DNA-based signal is dominated by typical marine picoeukaryotes such as dinoflagellates and foraminifera and represents a preserved water-column signal that may 'swamp out' detection of active fungi and preserved pollen-spores seen in the more sensitive RNA-based analysis. The sequencing depth per sample is N=2600 for RNA, and N=4400 for DNA.

DEEPCARBON

Joseph A. Russell¹, William D. Orsi², Virginia Edgcomb², and Jennifer F. Biddle¹ ¹University of Delaware, ²Woods Hole Oceanographic Institute

Figure 2: In the RNA-based study, fungi (specifically Basidiomycota and Ascomycota) and land-based plants (specifically Magnoliophyta) represent the most abundant eukaryotes detected (Fig. 2A). The molecular Magnoliophyta signal does not appear to be a contaminant as the general down-core trend mirrors that of shipboard pollen and spore counts (Fig. 2B). This indicates geological timescale preservation of RNA in the clay-rich sediments of the Iberian Margin. It cannot be determined from this data which fraction of the fungi are active and which are preserved. Further RNA-based work, such as down-core metatranscriptomics, would help toward that aim but attempts at generating this type of data have proven extremely difficult.

OBSERVATORY DCO International Science Meeting – Lisbon, Portugal

Depth (MBSF)	Most Complete Bins (>60% complete)
10.5	Nitrosopumilus (1), Dehalococcoides (1), JS1 (1)
29.5	JS1 (3)
48.5	JS1 (3)
67.5	JS1 (1), Bacteriodales (1)
86.5	JS1 (2), Bacteriodales (1)
123	JS1 (2)

of uncultivated phyla. At U1385, the cosmopolitan

